Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 27(5): 109673, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38646181

RESUMEN

Machine learning interatomic potential (MLIP) overcomes the challenges of high computational costs in density-functional theory and the relatively low accuracy in classical large-scale molecular dynamics, facilitating more efficient and precise simulations in materials research and design. In this review, the current state of the four essential stages of MLIP is discussed, including data generation methods, material structure descriptors, six unique machine learning algorithms, and available software. Furthermore, the applications of MLIP in various fields are investigated, notably in phase-change memory materials, structure searching, material properties predicting, and the pre-trained universal models. Eventually, the future perspectives, consisting of standard datasets, transferability, generalization, and trade-off between accuracy and complexity in MLIPs, are reported.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37874182

RESUMEN

Polymer-stabilized liquid crystals (PSLCs) are important electrically switchable materials due to their superior electro-optical properties. Nevertheless, it remains a formidable challenge to balance PSLCs' instant electro-optical performance and long-term durability due to their relatively low polymer content and the related sensitivity to external force. Herein, we demonstrate the possibility of regulating the polymer network structure in PSLCs via reversible addition-fragmentation chain transfer (RAFT) polymerization reactions of acrylate monomers with a chain transfer agent (CTA). By controlling the concentration of CTA and conditions of photopolymerization, the kinetics of the polymerization reaction can be modified. Compared to conventional free-radical (FR) polymerization, the reduced chain growth rate leads to sufficient chain relaxation, reorientation of liquid crystal (LC) directors, and alleviation of shrinkage stresses in the RAFT polymerization process. This in turn produces an ordered polymer network structure in the vertical direction and a uniform distribution in the horizontal plane. As a result, the PSLC network presents increased elasticity with a lower hysteresis effect and greatly improved durability. Our research offers insightful guidance for the fine-tuning of polymer network structures to prepare advanced LC/polymer composite structures with outstanding performances.

3.
Micromachines (Basel) ; 14(6)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37374711

RESUMEN

Electronic equipment, including phased array radars, satellites, high-performance computers, etc., has been widely used in military and civilian fields. Its importance and significance are self-evident. Electronic equipment has many small components, various functions, and complex structures, making assembly an essential step in the manufacturing process of electronic equipment. In recent years, the traditional assembly methods have had difficulty meeting the increasingly complex assembly needs of military and civilian electronic equipment. With the rapid development of Industry 4.0, emerging intelligent assembly technology is replacing the original "semi-automatic" assembly technology. Aiming at the assembly requirements of small electronic equipment, we first evaluate the existing problems and technical difficulties. Then, we analyze the intelligent assembly technology of electronic equipment from three aspects: visual positioning, path and trajectory planning, and force-position coordination control technology. Further, we describe and summarize the research status and the application of the technology and discuss possible future research directions in the intelligent assembly technology of small electronic equipment.

4.
Microsc Res Tech ; 85(3): 1075-1088, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34783417

RESUMEN

In the automatic drilling and riveting process, the perpendicular error of the hole is inevitable, which has a great influence on the assembly quality. In the current research, the shear and pull-out behaviors of riveted joints under different perpendicularity errors and squeeze forces were investigated and compared by the quasi-static tests. The fracture of the failed samples was characterized by a scanning electron microscope and the formation process of fracture was discussed. The failure mechanisms of riveted joints were analyzed in detail to guide engineering applications. The test results demonstrated that the shear load and pull-out load of riveted joints increased slightly with the increase of the tilt angle from 0° to 4°. The perpendicularity error did not affect the shear and pull-out failure modes of the riveted joints. However, the squeeze force had a significant effect on the failure modes of the pull-out samples. Fracture analysis showed that the failure of all shear samples occurred at the rivet shaft. Besides, when the squeeze force increased from 15 kN to 23 kN, the failure modes of the pull-out samples changed from the sheet to the rivet itself.

5.
Bioresour Technol ; 346: 126607, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34953985

RESUMEN

Volatile fatty acid (VFA) accumulation caused by high ammonia concentrations is often encountered during the anaerobic digestion (AD) of ammonia-rich substrates. In this study, propionate-degrading methanogenic cultures were introduced to augment the semi-continuous AD of chicken manure under high ammonia levels. Introduction of a methanogenic culture enhanced the methane yield in the bioaugmented digester by 17-26% when the organic loading rate (OLR) was 2-4 g L-1d-1 compared to that in the control. When the OLR was further increased from 4.0 L-1d-1 to 5.0 g L-1d-1, and bioaugmentation ceased, methane yield improved by 15-18% under a high total ammonia nitrogen level of 5.0-8.4 g NH4+-N/L. Moreover, bioaugmentation reconstructed the methanogenic community in the digester, promoting the dominance of hydrogenotrophic Methanobacterium and slightly increasing the abundance of aceticlastic Methanothrix and the syntrophic propionate-oxidizing bacteria Syntrophobacter, which were the key contributors to the improved AD under high ammonia concentrations.


Asunto(s)
Estiércol , Propionatos , Amoníaco , Anaerobiosis , Animales , Reactores Biológicos , Pollos , Metano
6.
RSC Adv ; 11(54): 34059-34070, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-35497317

RESUMEN

Various inorganic fillers are proved to be desirable synergists to improve the fire resistance of fire-retardant coatings. Herein, a functional filler (ANE) with flame retardant property was prepared by intercalating aluminum diethylphosphinate into microwave expanded vermiculite and grafting sodium stearate on its surface. The structure of ANE was fully characterized by FTIR, XRD, XPS and SEM analyses. Then ANE was applied to melamine modified urea-formaldehyde resin to produce fire-retardant coatings. The fire resistance test, TGA and cone calorimeter test demonstrate that ANE imparts great heat insulation, thermal stability, and flame retardancy to the coatings. Moreover, the introduction of ANE exhibits an excellent synergistic effect on reducing the heat release and smoke emission of the coatings. Specifically, with the addition of 3 wt% ANE, the heat release rate and smoke density grade of the coatings are decreased by 25.24% and 60.32%, respectively, compared to that without ANE. The excellent flame retardancy and smoke suppression performances of the coatings are mainly attributed to the formation of more cross-linking structures in the carbon layers, resulting in a more stable and compact char structure. In addition, the good hydrophobicity of ANE coatings can ensure the durability of flame retardancy.

7.
ACS Omega ; 5(11): 6062-6068, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32226888

RESUMEN

To enrich an acid-tolerant methanogenic culture used as bioaugmented seed under acidic conditions, we operated four semicontinuous digesters under various conditions of pH decline for producing methane at pH 5.0. 16S rRNA amplification was performed to unravel the association between declining pH and microbiome succession. The findings demonstrated that a gradual decrease of pH, at a step size of 0.5, and a prolonged run time at each pH could achieve a suitable microbial culture, in which acetoclastic Methanothrix and hydrogenotrophic Methanolinea represented the dominant methanogens. In contrast, a sharp decline in pH could result in heavy loss of the acetoclastic methanogen Methanothrix, leading to a cessation of methane production. Hydrogenotrophic methanogens exhibited high acid tolerance, and Methanospirillum could thrive despite a sudden low-pH shock. Although Methanolinea required a longer time to enrich, it played a substantial role in methane production under an acidic environment.

8.
Bioresour Technol ; 307: 123256, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32247275

RESUMEN

This study investigated whether bioaugmentation can improve the anaerobic digestion (AD) performance of food waste (FW), as well as the effects of addition dosage and frequency on the bioaugmentation's performance and economic feasibility. The findings demonstrated that all the bioaugmented digesters, regardless of dosage and frequency, performed more effectively in biogas production than the non-bioaugmentation control. Furthermore, relatively higher dosages or frequencies increased AD performance. Introducing 0.25 g L-1 d-1 of bioaugmentation seed every three days increased OLR and volumetric biogas production 8-fold and 12-fold, respectively, compared to the non-bioaugmentation control. Whole-genome sequencing analysis showed that bioaugmentation enhanced the population of the acetoclastic Methanothrix (belong to the order Methanosarcinales). Moreover, high abundance of Methanothrix (exceeding 80%) contributed to a better AD performance. Economic analysis of an up-scale biogas plant suggested that an appropriate bioaugmentation process increased income, thus increasing the profit to 3696 CNY d-1 if treated at 21 t FW.


Asunto(s)
Metano , Eliminación de Residuos , Anaerobiosis , Biocombustibles , Reactores Biológicos , Alimentos
9.
Polymers (Basel) ; 11(11)2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31766151

RESUMEN

Polymer stabilized liquid crystal (PSLC) devices can be used as smart privacy windows that switch between transparent and opaque states. The polyimide alignment layer of a PSLC device is usually obtained by the treatment of polyamide acid (PAA) with temperatures over 200 °C. This hinders the fabrication of PSLC devices on flexible substrates, which melt at these high temperatures. In this work, the fabrication of a PSLC alignment layer using a lower temperature that is compatible with most flexible substrates, is demonstrated. It was found that the treatment of PAA at 150 °C could generate the same alignment for liquid crystals. Based on this, a PSLC device was successfully fabricated on a flexible polyethylene terephthalate (PET) substrate, demonstrating excellent electro-optic performances.

10.
Ann Transl Med ; 7(12): 267, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31355234

RESUMEN

BACKGROUND: The National Natural Science Foundation of China (NSFC) plays an important role in supporting scientific research. And numerous scientists and researchers are concerned about the applications and funding. METHODS: Annual reports of 2014-2018 were searched respectively from the NSFC official website. Further analysis was made to discover the regularity and trend of projects funded by NSFC. RESULTS: The funding by NSFC continuously increased rapidly since its establishment. Recently, the annual amount, which is still on the rise, has reached more than 20 billion CNY. From the year 2014 to 2018 multifarious projects types were set up by NSFC to support scientific research of different level and multiple dimensions. CONCLUSIONS: In the past years, NSFC had provides strong support to basic scientific research in all fronts and provided a mechanism for fair competition.

11.
Materials (Basel) ; 12(7)2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30978996

RESUMEN

Based on semi-solid mixing technology, two kinds of as-cast Grp (Graphite particles)/AZ91 composites with different Grp volume fractions (5 vol %, 10 vol %) were prepared; these are called 5 vol % Grp/AZ91 composites and 10 vol % Grp/AZ91 composites, respectively. In order to eliminate casting defects, refine grains, and improve mechanical properties, thermal deformation analysis of these composites was conducted. The effect of the addition of Grp and thermal deformation on the microstructure, mechanical properties, and wear resistance of AZ91 composite was explored. The results showed that after 5 vol % Grp was added into the as-cast AZ91 alloy, Mg17Al12 phases were no longer precipitated reticularly along the grain boundary, and Al4C3 phases were formed inside the composite. With the increase in the volume fraction of Grp, the grains of the AZ91 composites were steadily refined. With the increase of forging pass, the grain size of 5% Grp/AZ91 composites decreased first, and then increased. Additionally, the Grp size decreased gradually. There was little change in the yield strength, and the tensile strength and elongation were improved to a certain extent. After forging and extrusion of 5% Grp/AZ91 composites once, the grain size and Grp size were further reduced, and the yield strength, tensile strength, and elongation were increased by 23%, 30%, and 65%, respectively, compared with the composite after forging. With the increase of the number of forging passes before extrusion, the grain size decreased little by little, while the Grp size remained unchanged. The average yield strength, tensile strength, and elongation of the composites after forging and extrusion six times were increased by 3%, 3%, and 23%, respectively, compared with the composite after forging and extrusion once. The wear rate and friction coefficient of the 5% Grp/AZ91 composites decreased after forging once, and the wear mechanism was mainly due to ploughing wear. By comparison, the wear rate and friction coefficient of the 5% Grp/AZ91 composites increased in the extrusion state, and the main wear mechanism was from wedge formation and micro-cutting wear.

12.
Materials (Basel) ; 11(10)2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30275352

RESUMEN

The present study investigated high-aspect ratio micro-hole array parts which were made by ZrO2 micro-powder with different particle sizes and micro-powder injection molding technology. It analysed the influence of particle sizes on feedstock, debinding and sintering of ceramic nozzles with multi-micro-holes. The forming quality of ceramic nozzles with multi-micro-holes was discussed in this paper. The results show that the two mixed ZrO2 feedstocks have fine uniformity. The average deviation of the feedstock made with 200 nm powder was -2%, and the average deviation of the feedstock made with 100 nm powder was -7.1%. The sample showed certain sintering characteristics which provided better strength (11.10 MPa) to parts after debinding. The linear shrinkage and the density of the two powder samples at different sintering temperatures increased as the sintering temperature increased. If the temperature continued to increase, the linear shrinkage and the density decreased. The highest hardness and flexural strength values of the ZrO2 sample with 200 nm powder used were: 1265.5 HV and 453.4 MPa, and the crystalline particle size was 0.36 µm. The highest hardness and flexural strength values of the ZrO2 sample with 100 nm powder used were: 1425.8 HV and 503.6 MPa, and the crystalline particle size was 0.18 µm. The ceramic nozzles with multi-micro holes shrunk to nearly the same axial, radial and circumferential directions during sintering. After sintering, the roundness of ceramic micro-hole met the user requirements, and the circular hole had a high parallelism in the axial direction. The micropore diameter was 450 ± 5 µm, and it was possible to control the dimensional accuracy within 1.5% after sintering. The study presented a superior application prospect for high-aspect ratio micro hole array parts in aerospace, electronics and biomedicine.

13.
Zhongguo Zhong Yao Za Zhi ; 37(16): 2492-7, 2012 Aug.
Artículo en Chino | MEDLINE | ID: mdl-23234155

RESUMEN

With the constant development of the drug screening technology, new screening methods and techniques have came to the fore, driving drug screening to grow rapidly and efficiently with a high throughput. Characterized by micro-scale analysis, high throughput, inheritability and good biocompatibility, the micro-fluidic analytical technology provides a new method and technical platform for screening active ingredients from natural products. This essay introduces multiple methods used for screening active ingredients from natural products and focuses on the micro-fluidic chip screening technology combined with cell culture and its characteristics, the composition of the platform of the micro-fluidic chip screening technology and its application in screening active ingredients from natural products.


Asunto(s)
Productos Biológicos/química , Evaluación Preclínica de Medicamentos/métodos , Técnicas Analíticas Microfluídicas/métodos , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...